![]() Photonisches bauelement
专利摘要:
Die Erfindung bezieht sich unter anderem auf ein photonisches Bauelement (10) mit einer Interferenzeinrichtung (20), die mindestens einen Eingang und zumindest einen ersten und einen zweiten Ausgang aufweist. Erfindungsgemäß ist vorgesehen, dass das Bauelement darüber hinaus umfasst: einen ersten Gitterkoppler (GC1), der einen ersten und einen zweiten Gitterkopplerausgang aufweist und mit einem Gitterkopplereingang mit dem ersten Ausgang der Interferenzeinrichtung in Verbindung steht, einen zweiten Gitterkoppler (GC2), der einen ersten und einen zweiten Gitterkopplerausgang aufweist und mit einem Gitterkopplereingang mit dem zweiten Ausgang der Interferenzeinrichtung in Verbindung steht, einen ersten Photodetektor (PD1), der mit dem ersten Gitterkopplerausgang des ersten Gitterkopplers in Verbindung steht, einen zweiten Photodetektor (PD2), der mit dem ersten Gitterkopplerausgang des zweiten Gitterkopplers in Verbindung steht, und eine Steuereinrichtung (30), die mit dem ersten und zweiten Photodetektor in Verbindung steht und anhand der Photosignale (I1, I2) der beiden Photodetektoren oder einem mit den Photosignalen gebildeten Auswertsignal zumindest ein Steuersignal (ST1, ST2) zur Ansteuerung der Interferenzeinrichtung bildet, wobei der erste und zweite Gitterkoppler in derselben Chipebene (E) eines Chips (2000) des Bauelements angeordnet, insbesondere integriert, sind und wobei bei dem ersten und zweiten Gitterkoppler jeweils die zweiten Gitterkopplerausgänge jeweils einen Koppelpfad aus der Chipebene hinaus bilden, und zwar in einem Winkel zwischen 70 und 110 Grad zur Chipebene. 公开号:EP3686636A1 申请号:EP20153369.2 申请日:2017-11-06 公开日:2020-07-29 发明作者:Marco Vitali;Danilo BRONZI 申请人:Sicoya GmbH; IPC主号:G02F1-00
专利说明:
[0001] Die Erfindung bezieht sich auf ein photonisches Bauelement mit einer Interferenzeinrichtung, die mindestens einen Eingang und zumindest einen ersten und einen zweiten Ausgang aufweist. Ein solches photonisches Bauelement ist beispielsweise aus der US-Offenlegungsschrift US 2010/128336 bekannt. [0002] Andere Bauelemente sind aus den Druckschriften US 2015/277207 A1 , EP 1 906 564 A1 , EP 2 386 890 A1 , US 2015/309261 A1 und EP 1 168 039 A2 bekannt. [0003] Ein Bauelement mit den Merkmalen gemäß dem Oberbegriff des Patentanspruchs 1 ist in der Schrift US 2010/128336 A1 beschrieben. [0004] Der Erfindung liegt die Aufgabe zugrunde, ein photonisches Bauelement mit einem kompakten Aufbau anzugeben. [0005] Diese Aufgabe wird erfindungsgemäß durch ein photonisches Bauelement mit den Merkmalen gemäß Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen des erfindungsgemäßen Bauelements sind in Unteransprüchen angegeben. [0006] Danach ist erfindungsgemäß vorgesehen, dass das Bauelement umfasst: einen ersten Gitterkoppler, der einen ersten und einen zweiten Gitterkopplerausgang aufweist und mit einem Gitterkopplereingang mit dem ersten Ausgang der Interferenzeinrichtung in Verbindung steht, einen zweiten Gitterkoppler, der einen ersten und einen zweiten Gitterkopplerausgang aufweist und mit einem Gitterkopplereingang mit dem zweiten Ausgang der Interferenzeinrichtung in Verbindung steht, einen ersten Photodetektor, der mit dem ersten Gitterkopplerausgang des ersten Gitterkopplers in Verbindung steht, einen zweiten Photodetektor, der mit dem ersten Gitterkopplerausgang des zweiten Gitterkopplers in Verbindung steht, und eine Steuereinrichtung, die mit dem ersten und zweiten Photodetektor in Verbindung steht und anhand der Photosignale der beiden Photodetektoren oder einem mit den Photosignalen gebildeten Auswertsignal zumindest ein Steuersignal zur Ansteuerung der Interferenzeinrichtung bildet, wobei der erste und zweite Gitterkoppler in derselben Chipebene eines Chips des Bauelements angeordnet, insbesondere integriert, sind und wobei bei dem ersten und zweiten Gitterkoppler jeweils die zweiten Gitterkopplerausgänge jeweils einen Koppelpfad aus der Chipebene hinaus bilden, und zwar in einem Winkel zwischen 70 und 110 Grad zur Chipebene. [0007] Ein wesentlicher Vorteil des erfindungsgemäßen Bauelements ist darin zu sehen, dass die Photodetektoren als Monitordetektoren eingesetzt werden können, mit denen sich die an den zweiten Gitterkopplerausgängen der Gitterkoppler austretende optische Leistung beobachten lässt. So ist es beispielsweise möglich, durch Ansteuerung der Interferenzeinrichtung eine Nachregelung vorzunehmen und den Arbeitspunkt in den Signalpfaden wunschgemäß einzustellen. [0008] Ein weiterer wesentlicher Vorteil des erfindungsgemäßen Bauelements ist darin zu sehen, dass durch den erfindungsgemäß vorgesehenen Einsatz von Gitterkopplern jeweils ein chipebenenbezogen interner Ausgangskoppelpfad innerhalb der Chipebene und ein chipebenenbezogen externer Ausgangskoppelpfad aus der Chipebene heraus zur Verfügung steht. Dies ermöglicht es beispielsweise, Ausgangssignale, die das Bauelement verlassen sollen, über die chipebenenbezogen externen Ausgangskoppelpfade auszukoppeln und das Monitoring bzw. Beobachten der Ausgangssignale mittels der Photodetektoren über die chipebenenbezogen internen Ausgangskoppelpfade durchzuführen. [0009] Ein zusätzlicher wesentlicher Vorteil des erfindungsgemäßen Bauelements ist darin zu sehen, dass durch die Anordnung des ersten und zweiten Gitterkopplers in derselben Chipebene des Chips des Bauelements ein kompakter Aufbau erreichbar ist und die Fertigung des Bauelements vereinfacht wird, insbesondere kostengünstig wird. [0010] Vorteilhaft ist es, wenn auch die Interferenzeinrichtung in der Chipebene des Chips angeordnet oder in dieser integriert ist. [0011] Darüber hinaus ist es vorteilhaft, wenn mindestens ein in der Chipebene des Chips des Bauelements angeordneter oder darin integrierter Wellenleiter den ersten Ausgang der Interferenzeinrichtung mit dem Gitterkopplereingang des ersten Gitterkopplers, den zweiten Ausgang der Interferenzeinrichtung mit dem Gitterkopplereingang des zweiten Gitterkopplers, den ersten Gitterkopplerausgang des ersten Gitterkopplers mit dem ersten Photodetektor oder den ersten Gitterkopplerausgang des zweiten Gitterkopplers mit dem zweiten Photodetektor verbindet. [0012] Der erste und zweite Photodetektor und der erste und zweite Gitterkoppler sind vorzugsweise jeweils in derselben Chipebene des Chips des Bauelements angeordnet, insbesondere in dieser integriert (bevorzugt monolithisch). [0013] Bei einer alternativen Ausgestaltung des Bauelements ist vorgesehen, dass zumindest einer der Photodetektoren oder beide Photodetektoren außerhalb der Chipebene des Chips angeordnet sind. [0014] Bei der letztgenannten Ausführungsform ist es vorteilhaft, wenn zwischen dem außerhalb der Chipebene des Chips angeordneten Photodetektor und dem mit diesem in Verbindung stehenden Gitterkoppler ein weiterer Koppler angeordnet ist, insbesondere ein solcher, der in der Chipebene angeordnet ist und dessen Kopplerausgang einen Koppelpfad aus der Chipebene hinaus bildet, und zwar in einem Winkel zwischen 70 und 110 Grad zur Chipebene. [0015] Das Bauelement kann einen Summierer aufweisen, der als Auswertsignal ein Summensignal durch Summieren der beiden Photosignale bildet; das Summensignal kann von der Steuereinrichtung zur Ansteuerung der Interferenzeinrichtung herangezogen werden. [0016] Auch kann das Bauelement einen Differenzbilder aufweisen, der als Auswertsignal ein Differenzsignal durch Subtrahieren eines der beiden Photosignale von dem anderen der beiden Photosignale bildet; das Differenzsignal kann von der Steuereinrichtung zur Ansteuerung der Interferenzeinrichtung herangezogen werden. [0017] Vorzugsweise weist die Interferenzeinrichtung mindestens einen Mach-Zehnder-Modulator auf. [0018] Bezüglich der Ausgestaltung des Mach-Zehnder-Modulators wird es als vorteilhaft angesehen, wenn dieser eingangsseitig einen 2x2-Richtkoppler mit zwei Eingängen und zwei Ausgängen oder einen 1x2-Teiler mit einem Eingang und zwei Ausgängen aufweist, der Eingang des eingangsseitigen 1x2-Teilers oder die zwei Eingänge des eingangsseitigen Richtkopplers den Eingang oder die zwei Eingänge der Interferenzeinrichtung bilden oder mit diesem oder diesen zumindest in Verbindung stehen, an die zwei Ausgänge des eingangsseitigen Richtkopplers oder 1x2-Teilers jeweils ein Wellenleiter angeschlossen ist, von denen mindestens einer mit einem von der Steuereinrichtung angesteuerten Phasenmodulator ausgestattet ist. [0019] Der Mach-Zehnder-Modulator weist ausgangsseitig vorzugsweise einen 2x2-Richtkoppler mit zwei Eingängen und zwei Ausgängen auf. [0020] An die zwei Eingänge des ausgangsseitigen Richtkopplers sind bevorzugt die zwei Wellenleiter angeschlossen, und die zwei Ausgänge des ausgangsseitigen Richtkopplers bilden bevorzugt die Ausgänge der Interferenzeinrichtung oder stehen bevorzugt mit diesen zumindest in Verbindung. [0021] Auch ist es vorteilhaft, wenn die Interferenzeinrichtung zwei oder mindestens zwei Mach-Zehnder-Modulatoren aufweist. [0022] Die Mach-Zehnder-Modulatoren sind vorzugsweise mittels eines eingangsseitigen Leistungsteilers, insbesondere eines eingangsseitigen 1x2-Teilers oder eines eingangsseitigen 2x2-Richtkopplers, sowie mittels eines ausgangsseitigen Leistungsteilers, insbesondere eines ausgangsseitigen 2x2-Richtkopplers, optisch parallel geschaltet. [0023] Alternativ oder zusätzlich kann die Interferenzeinrichtung einen Ringresonator aufweisen. [0024] Bei der letztgenannten Variante ist es von Vorteil, wenn die Interferenzeinrichtung zumindest zwei Koppler aufweist, die jeweils durch einen Abschnitt des Ringresonators und einen zu dem jeweiligen Abschnitt benachbarten Wellenleiter gebildet sind, wobei der mindestens eine Eingang der Interferenzeinrichtung oder zumindest einer der Eingänge der Interferenzeinrichtung über einen der zumindest zwei Koppler an den Ringresonator angekoppelt ist, der erste Ausgang der Interferenzeinrichtung über den einen der zumindest zwei Koppler oder einen anderen der zumindest zwei Koppler an den Ringresonator angekoppelt ist und der zweite Ausgang der Interferenzeinrichtung über den einen der zumindest zwei Koppler oder einen anderen der zumindest zwei Koppler an den Ringresonator angekoppelt ist. [0025] Auch ist es von Vorteil, wenn zumindest ein Dämpfungsglied in den Signalpfad zwischen dem ersten Ausgang der Interferenzeinrichtung und dem ersten Photodetektor oder in den Signalpfad zwischen dem zweiten Ausgang der Interferenzeinrichtung und dem zweiten Photodetektor geschaltet ist. [0026] Das Dämpfungsglied ist vorzugsweise einstellbar. Es steht vorzugsweise mit der Steuereinrichtung in Verbindung und wird von dieser angesteuert. [0027] Von besonderem Vorteil ist es, wenn die Steuereinrichtung die Interferenzeinrichtung und das Dämpfungsglied derart ansteuert, dass ein an dem zweiten Gitterkopplerausgang des ersten Gitterkopplers austretendes und von der Interferenzeinrichtung zumindest auch amplitudenmoduliertes optisches Signal ein vorgegebenes Ein-Aus-Verhältnis erreicht. [0028] Alternativ oder zusätzlich kann die Steuereinrichtung das Dämpfungsglied in vorteilhafter Weise derart einstellen, dass die optische Pfaddämpfung im Signalpfad zwischen dem ersten Ausgang der Interferenzeinrichtung und dem ersten Photodetektor und die optische Pfaddämpfung im Signalpfad zwischen dem zweiten Ausgang der Interferenzeinrichtung und dem zweiten Photodetektor gleich groß sind oder zumindest weniger als ein vorgegebenes Maß voneinander abweichen. [0029] Das Dämpfungsglied weist bevorzugt eine Ladungsträgerinjektionsstruktur, insbesondere eine p-n- oder pin-Diodenstruktur, zur Ladungsträgerinjektion auf. [0030] Der optische Signalpfad zwischen dem ersten Ausgang der Interferenzeinrichtung und dem ersten Photodetektor und der optische Signalpfad zwischen dem zweiten Ausgang der Interferenzeinrichtung und dem zweiten Photodetektor sind vorzugsweise achsensymmetrisch zueinander angeordnet, damit diese die Signaleigenschaften identisch oder zumindest hochgradig ähnlich beeinflussen. [0031] Mit Blick auf den Signalfluss wird es als vorteilhaft angesehen, wenn der Signalpfad zwischen dem ersten Ausgang der Interferenzeinrichtung und dem ersten Photodetektor und der Signalpfad zwischen dem zweiten Ausgang der Interferenzeinrichtung und dem zweiten Photodetektor die gleiche Pfaddämpfung aufweisen, insbesondere aus baugleichen Komponenten bestehen, die identisch oder symmetrisch zueinander angeordnet sind. [0032] In der Chipebene ist der maximale Abstand zwischen dem ersten Signalpfad, der zwischen dem ersten Ausgang der Interferenzeinrichtung und dem ersten Photodetektor gebildet wird, und dem zweiten Signalpfad, der zwischen dem zweiten Ausgang der Interferenzeinrichtung und dem zweiten Photodetektor gebildet wird, vorzugsweise kleiner als 100 µm. [0033] Die Steuereinrichtung ist in den Chip vorzugsweise monolithisch integriert. [0034] Der erste und zweite Gitterkoppler sind vorzugsweise baugleich. [0035] Der zweite Gitterkopplerausgang des ersten und/oder zweiten Gitterkopplers bildet vorzugsweise einen optischen Signalausgang des photonischen Bauelements. [0036] Die Erfindung bezieht sich außerdem auf ein Verfahren zum Betreiben eines photonischen Bauelements, wie es oben beschrieben worden ist. Der Betrieb erfolgt vorzugsweise wie oben bereits eingehend erläutert. [0037] Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert; dabei zeigen beispielhaft Figur 1 ein Ausführungsbeispiel für ein erfindungsgemäßes Bauelement, bei dem eine Interferenzeinrichtung, zwei Gitterkoppler, zwei Photodetektoren sowie Wellenleiter in derselben Chipebene eines Chips des Bauelements integriert sind, Figur 2 die Arbeitsweise der Interferenzeinrichtung 20 bei dem photonischen Bauelement gemäß Figur 1, Figur 3 ein Ausführungsbeispiel für ein erfindungsgemäßes Bauelement, bei dem zwei Mach-Zehnder-Interferometer-Modulatoren einer Interferenzeinrichtung vorgeordnet sind, Figur 4 ein Ausführungsbeispiel für eine optische Wellenleiterstruktur, die bei den Interferenzeinrichtungen der photonischen Bauelemente gemäß den Figuren 1 und 3 zusätzlich eingesetzt werden kann, Figur 5 ein Ausführungsbeispiel für ein photonisches Bauelement, bei dem eine Interferenzeinrichtung einen Ringresonator umfasst, Figur 6 ein Ausführungsbeispiel für ein photonisches Bauelement, bei dem zwischen Gitterkopplern und Photodetektoren jeweils ein Dämpfungsglied vorgesehen ist, Figur 7 die Arbeitsweise der Dämpfungsglieder bei der Ausführungsvariante gemäß Figur 6, Figur 8 ein Ausführungsbeispiel für ein photonisches Bauelement, bei dem Photodetektoren außerhalb der Chipebene integriert sind, in der die Interferenzeinrichtung sowie die Gitterkoppler integriert sind, Figur 9 ein Ausführungsbeispiel für ein erfindungsgemäßes photonisches Bauelement, bei dem zwei Signalpfade, die der Interferenzeinrichtung nachgeordnet sind, zwar nicht parallel, aber spiegelsymmetrisch zu einer Spiegelachse angeordnet sind, Figur 10 ein Ausführungsbeispiel für eine Ladungsträgerinjektionsstruktur, die als Dämpfungsglied bei dem Ausführungsbeispiel gemäß den Figuren 5 und 6 eingesetzt werden kann, Figur 11 ein Ausführungsbeispiel für ein erfindungsgemäßes photonisches Bauelement mit einer Vielzahl an Signalpfaden, Figur 12 ein photonisches Bauelement, bei dem an die ersten Ausgänge zweier Gitterkoppler Photodetektoren unmittelbar aufgesetzt sind, und Figur 13 beispielhaft einen Abschnitt einer Ausführungsvariante für das photonische Bauelement gemäß Figur 1 in einem Querschnitt. [0038] In den Figuren werden für identische oder vergleichbare Komponenten der Übersicht halber stets dieselben Bezugszeichen verwendet. [0039] Die Figur 1 zeigt ein photonisches Bauelement 10, das eingangsseitig eine Interferenzeinrichtung 20 aufweist. An einen ersten Ausgang A20a der Interferenzeinrichtung 20 ist ein erster Signalpfad SP1 angeschlossen, der einen ersten Gitterkoppler GC1, einen ersten Photodetektor PD1 sowie zwei Wellenleiter 101 und 102 umfasst. Der Wellenleiter 101 verbindet den ersten Ausgang A20a der Interferenzeinrichtung 20 mit einem Gitterkopplereingang IG1 des ersten Gitterkopplers GC1. Der Wellenleiter 102 verbindet einen ersten Gitterkopplerausgang A1a des ersten Gitterkopplers GC1 mit dem ersten Photodetektor PD1. [0040] Der erste Gitterkoppler GC1 weist darüber hinaus einen zweiten Gitterkopplerausgang A1b auf, der einen Koppelpfad aus der Bildebene der Figur 1 hinaus bildet, und zwar in einem Winkel zwischen 70° und 110° zur Bildebene. Die Bildebene in Figur 1 wird durch eine Chipebene E eines Chips des photonischen Bauelements 10 gebildet. [0041] An einen zweiten Ausgang A20b der Interferenzeinrichtung 20 ist ein zweiter Signalpfad SP2 angeschlossen, der einen zweiten Gitterkoppler GC2 und einen zweiten Photodetektor PD2 aufweist. Darüber hinaus sind zwei Wellenleiter 201 und 202 vorhanden, von denen einer, nämlich der Wellenleiter 201, den zweiten Ausgangs A20b der Interferenzeinrichtung 20 mit dem Gitterkopplereingang IG2 des zweiten Gitterkopplers GC2 und der andere Wellenleiter 202 einen ersten Gitterkopplerausgang A2a des zweiten Gitterkopplers GC2 mit dem zweiten Photodetektor PD2 verbindet. [0042] Ein zweiter Gitterkopplerausgang A2b des zweiten Gitterkopplers GC2 bildet einen Koppelpfad aus der Chipebene E des Chips des photonischen Bauelements 10 hinaus, und zwar in einem Winkel zwischen 70° und 110° zur Chipebene E bzw. zur Bildebene in Figur 1. [0043] Die Interferenzeinrichtung 20 umfasst einen eingangsseitigen 2x2-Richtkoppler 21 mit zwei Eingängen E21a und E21b sowie zwei Ausgängen A21a und A21b. Die beiden Eingänge E21a und E21b des eingangsseitigen Richtkopplers 21 bilden die Eingänge der Interferenzeinrichtung 20. [0044] An die zwei Ausgänge A21a und A21b des eingangsseitigen Richtkopplers 21 ist jeweils ein Wellenleiter 22 bzw. 23 angeschlossen. Die beiden Wellenleiter 22 und 23 verbinden den eingangsseitigen Richtkoppler 21 mit Eingängen E24a und E24b eines ausgangsseitigen Richtkopplers 24. Die Ausgänge des ausgangsseitigen Richtkopplers 24 bilden die Ausgänge A20a und A20b der Interferenzeinrichtung 20. [0045] Die beiden Wellenleiter 22 und 23 sind jeweils mit einem Phasenmodulator bzw. Phasenschieber H1 bzw. H2 ausgestattet. Die Ansteuerung der beiden Phasenschieber H1 und H2 erfolgt durch Steuersignale ST1 und ST2, die von einer Steuereinrichtung 30 erzeugt werden. Die Steuereinrichtung 30 steht eingangsseitig mit den beiden Photodetektoren PD1 und PD2 in Verbindung und wertet deren Photoströme bzw. Photosignale I1 und I2 oder alternativ Auswertsignale, die mit den Photosignalen I1 und I2 gebildet werden, aus. Bei dem Ausführungsbeispiel gemäß Figur 1 ist der Steuereinrichtung 30 ein Summierer 31 und ein Differenzbilder 32 vorgeordnet, die die Photosignale I1 und I2 der beiden Photodetektoren PD1 und PD2 verarbeiten und als Auswertsignale ein Summensignal Isum und ein Differenzsignal Idiff erzeugen. [0046] Die Steuereinrichtung 30 ist derart ausgestaltet, dass sie die Steuersignale ST1 und ST2 so erzeugt, dass die Empfangsleistungen bei den beiden Photodetektoren PD1 und PD2 und damit deren Photoströme bzw. Photosignale I1 und I2 gleich groß sind. [0047] Um eingangsseitig in das photonische Bauelement 10 eingespeiste optische Signale P1 und P2 darüber hinaus in der Amplitude und/oder der Phase modulieren zu können, weist das Bauelement 10 zwei Modulatoren PS1 und PS2 auf, die bei dem Ausführungsbeispiel gemäß Figur 1 in den Wellenleitern 22 und 23 der Interferenzeinrichtung 20 integriert sind. Die zwei Modulatoren PS1 und PS2 können von der Steuereinrichtung 30 oder einer anderen in der Figur 1 aus Gründen der Übersicht nicht gezeigten Einrichtung angesteuert werden. [0048] Bei dem Ausführungsbeispiel gemäß Figur 1 sind die Interferenzeinrichtung 20, die beiden Gitterkoppler GC1 und GC2, die beiden Photodetektoren PD1 und PD2, die Wellenleiter 101, 102, 201 und 202, der Summierer 31, der Differenzbilder 32 sowie die Steuereinrichtung 30 in derselben Chipebene E, die in der Figur 1 durch die Bildebene der Figur 1 gebildet ist, eines Chips des photonischen Bauelements 10 integriert, vorzugsweise monolithisch integriert. Der Chip ist vorzugsweise ein Silizium-Chip, insbesondere auf der Basis von SOI-Material. [0049] Bei dem in der Figur 1 gezeigten Aufbau des Bauelements 10 bilden die beiden Gitterkoppler GC1 und GC2 jeweils einen chipebenenbezogen internen Ausgangskoppelpfad, der mit den Wellenleitern 102 bzw. 202 und über letztere mit den Photodetektoren PD1 und PD2 in Verbindung steht, und einen chipebenenbezogen externen Ausgangskoppelpfad, der eine Auskopplung von elektromagnetischer Strahlung aus der Chipebene E heraus vornimmt. Dieser Aufbau ermöglicht es beispielsweise, Ausgangssignale, die das Bauelement 10 verlassen sollen, über die chipebenenbezogen externen Ausgangskoppelpfade auszukoppeln und das Monitoring der Ausgangssignale mittels der Photodetektoren PD1 und PD2 innerhalb der Chipebene über die chipebenenbezogen internen Ausgangskoppelpfade durchzuführen. [0050] Die Figur 2 zeigt beispielhaft die Arbeitsweise der Steuereinrichtung 30. Es lässt sich erkennen, dass die Steuereinrichtung 30 die Steuersignale ST1 und ST2 derart erzeugt, dass die Empfangsleistung bei den beiden Photodetektoren PD1 und PD2 und damit deren Photosignale I1 und I2 gleich groß werden, also die Photosignale I1 und I2 jeweils 50 % der sich bei Summenbildung beider Photosignale ergebenden Signalsumme betragen. Eine solche Leistungsverteilung lässt sich erreichen, indem mit den Phasenschiebern H1 und H2 eine Phasendifferenz dPhi von π/2 (siehe Figur 2) zwischen den Wellenleitern 22 und 23, also dem Signalpfad zwischen dem Ausgang A21a und dem Eingang E24a und dem Signalpfad zwischen dem Ausgang A21b und dem Eingang E24b, eingestellt wird. [0051] In der Figur 2 ist beispielhaft gezeigt, wie im Falle einer Abweichung des tatsächlichen Arbeitspunkts - hier Istarbeitspunkt IAP genannt - von dem erwähnten Sollarbeitspunkt SAP, bei dem die Leistungsverteilung auf die zwei Photodetektoren PD1 und PD2 jeweils 50% beträgt, die Steuereinrichtung 30 die beiden Phasenschieber H1 und H2 derart nachregelt, dass durch eine korrigierte Phasenverschiebung dPhi zwischen den Wellenleitern 22 und 23 der jeweilige Istarbeitspunkt IAP zum Sollarbeitspunkt SAP verschoben wird. [0052] Die Figur 3 zeigt ein weiteres Ausführungsbeispiel für ein photonisches Bauelement 10, bei dem eine Interferenzeinrichtung 20, zwei Gitterkoppler GC1 und GC2, zwei Photodetektoren PD1 und PD2 sowie eine Steuereinrichtung 30 vorhanden sind. Im Unterschied zu dem Ausführungsbeispiel gemäß Figur 1 sind Zweier-Mach-Zehnder-Modulatoren MZM1 und MZM2 vorhanden, die eine Amplitudenmodulation der von zwei Emittern 60 und 70 erzeugten Photosignale P1 und P2 vornehmen, bevor diese in die Interferenzeinrichtung 20 eingespeist werden. [0053] Bei dem Ausführungsbeispiel gemäß Figur 3 sind die Interferenzeinrichtung 20, die beiden Gitterkoppler GC1 und GC2, die beiden Photodetektoren PD1 und PD2, die Steuereinrichtung 30 sowie auch die Emitter 60 und 70 in derselben Chipebene E des Bauelements 10 integriert. Die beiden Emitter 60 bzw. 70 können in hybrider Weise oder auch monolithisch integriert sein. [0054] Die Figur 4 zeigt ein Ausführungsbeispiel für eine Anordnung von zwei Mach-Zehnder-Modulatoren MZM1 und MZM2, die mittels eines eingangsseitigen Leistungsteilers 401 und eines ausgangsseitigen Leistungsteilers 402 optisch parallel geschaltet sind. Die Parallelschaltung der beiden Mach-Zehnder-Modulatoren MZM und MZM2 kann in den Interferenzeinrichtungen 20 gemäß den Figuren 1 und 3 integriert werden, beispielsweise, wenn das optische Bauelement 10 einen QPSK-Transmitter bilden soll. [0055] Die Ansteuerung der Mach-Zehnder-Modulatoren MZM1 und MZM2 erfolgt vorzugsweise durch die Steuereinrichtung 30 gemäß Figur 1 bzw. Figur 3. [0056] Die Figur 5 zeigt ein weiteres Ausführungsbeispiel für ein photonisches Bauelement 10, das mit einer Interferenzeinrichtung 20, zwei Gitterkopplern GC1 und GC2 sowie zwei Photodetektoren PD1 und PD2 ausgestattet ist. Die beiden Photodetektoren PD1 und PD2 senden ihre Photosignale zu einer Steuereinrichtung, die aus Gründen der Übersicht in der Figur 5 nicht weiter dargestellt ist und die Ansteuerung der Interferenzeinrichtung 20 durchführt. [0057] Die beiden Gitterkoppler GC1 und GC2 weisen jeweils einen Gitterkopplereingang IG1 und IG2, zwei erste Gitterkopplerausgänge A1a bzw. A2a und zwei zweite Gitterkopplerausgänge A1b bzw. A2b auf. Die Koppelpfade, die durch die zwei ersten Gitterkopplerausgänge A1a und A2a der beiden Gitterkoppler GC1 und GC2 gebildet werden, liegen in ein und derselben Chipebene E eines Chips des photonischen Bauelements 10, also in der Bildebene gemäß Figur 5. [0058] Die Koppelpfade, die durch die zweiten Gitterkopplerausgänge A1b und A2b der beiden Gitterkoppler GC1 und GC2 gebildet werden, stehen in einem Winkel zwischen 70° und 110° zur Chipebene E bzw. zur Bildebene in Figur 5. Mit anderen Worten wird optische Strahlung, die durch die Gitterkopplerausgänge A1b und A2b ausgekoppelt wird, aus der Bildebene in Figur 5 in Richtung auf den Betrachter ausgekoppelt. [0059] Die Interferenzeinrichtung 20 weist bei dem Ausführungsbeispiel gemäß Figur 5 einen Ringresonator 500 auf, der über einen ersten Koppler 501 mit einem Signaleingang E10 des photonischen Bauelements 10 sowie dem ersten Gitterkoppler GC1 und über diesen mit dem ersten Photodetektor PD1 gekoppelt ist. [0060] Ein zweiter Koppler 502 der Interferenzeinrichtung 20 koppelt den Ringresonator 500 mit dem zweiten Gitterkoppler GC2 und damit mit dem zweiten Photodetektor PD2. [0061] Der Ringresonator 500 kann mit einem Phasenmodulator 503 ausgestattet sein, der von einer nicht weiter gezeigten Steuereinrichtung des Bauelements 10 angesteuert wird. Die Ansteuerung des Phasenmodulators 503 durch die Steuereinrichtung erfolgt vorzugsweise derart, dass die beiden Photodetektoren PD1 und PD2 jeweils ein vorgegebenes Empfangsleistungsverhältnis bezogen auf die Leistung des Eingangssignals P1 am Eingang E10 empfangen können. Bezüglich der Ansteuerung des Phasenmodulators 503 bzw. der Interferenzeinrichtung 20 sei auf die obigen Ausführungen im Zusammenhang mit den Figuren 1 bis 3 verwiesen, die hier entsprechend gelten. [0062] Zwischen dem ersten Gitterkoppler GC1 und dem ersten Koppler 501 kann alternativ zu dem Phasenmodulator 503 oder zusätzlich zu diesem ein einstellbares Dämpfungsglied 504 vorgesehen sein, um durch Einstellen einer zusätzlichen Dämpfung das gewünschte Verhältnis der Empfangsleistungen an den beiden Photodetektoren PD1 und PD2 zu erreichen. [0063] In der Figur 6 ist eine alternative Ausgestaltung des photonischen Bauelements 10 gemäß Figur 1 gezeigt. Es lässt sich erkennen, dass zwischen die beiden Gitterkoppler GC1 und GC2 und die jeweils zugeordneten Photodetektoren PD1 und PD2 jeweils ein Dämpfungsglied 601 bzw. 602 geschaltet ist. Die Dämpfungsglieder 601 und 602 werden von der Steuereinrichtung 30 angesteuert. Durch die Ansteuerung der Dämpfungsglieder 601 und 602 ist es möglich, den Arbeitspunkt des Bauelements 10 noch weiter zu verändern bzw. einzustellen, als dies bei dem Ausführungsbeispiel gemäß Figur 1 bzw. Figur 2 möglich ist. So lässt sich in der Figur 7 erkennen, dass durch eine Ansteuerung des Dämpfungsglieds 602 im Signalpfad SP2 das Photosignal I2 des zweiten Photodetektors PD2 verschoben werden kann (siehe verschobenes Photosignal 12'), so dass damit einhergehend auch der ohne eine aktive Dämpfung resultierende Sollarbeitspunkt SAP zu einem neuen Sollarbeitspunkt SAP' verändert werden kann. [0064] Beispielsweise ist es möglich, dass die Steuereinrichtung 30 die Interferenzeinrichtung 20 und eines der Dämpfungsglieder 601 bzw. 602 oder beide derart ansteuert, dass ein an dem zweiten Gitterkopplerausgang A1b des ersten Gitterkopplers GC1 austretendes und von der Interferenzeinrichtung 20 oder einer vor- oder nachgeordneten anderen Einrichtung zumindest auch amplitudenmoduliertes optisches Signal ein vorgegebenes Ein-Aus-Verhältnis erreicht. [0065] Alternativ oder zusätzlich kann die Steuereinrichtung 30 und eines der Dämpfungsglieder 601 bzw. 602 oder beide derart einstellen, dass die optische Pfaddämpfung im Signalpfad SP1 zwischen dem ersten Ausgang A20a der Interferenzeinrichtung 20 und dem ersten Photodetektor PD1 und die optische Pfaddämpfung im Signalpfad SP2 zwischen dem zweiten Ausgang A20b der Interferenzeinrichtung 20 und dem zweiten Photodetektor PD2 gleich groß sind oder zumindest weniger als ein vorgegebenes Maß voneinander abweichen. [0066] Die Figur 8 zeigt ein Ausführungsbeispiel für ein photonisches Bauelement 10, bei dem die beiden Photodetektoren PD1 und PD2 nicht in der Chipebene E des Bauelements 10 bzw. nicht in der Bildebene gemäß Figur 8 liegen, sondern in einer anderen Chipebene und somit externe Photodetektoren bilden. Das Auskoppeln der optischen Strahlung aus der Chipebene E erfolgt durch zwei weitere Gitterkoppler GC3 und GC4 in Richtung auf die externen Photodetektoren PD1 und PD2. Der Anschluss zwischen den Photodetektoren PD1 und PD2 und den zugeordneten Gitterkopplern GC3 und GC4 kann beispielsweise über externe Fasern 801 bzw. 802 erfolgen. [0067] Die Figur 9 zeigt ein weiteres Ausführungsbeispiel für ein optisches Bauelement 10, das im Wesentlichen dem Bauelement gemäß Figur 1 entspricht. Im Unterschied zu dem Ausführungsbeispiel gemäß Figur 1 sind die Signalpfade SP1 und SP2 nicht geradlinig ausgebildet, sondern abschnittsweise gekrümmt. Um zu gewährleisten, dass die Signalpfade SP1 und SP2 optisch dasselbe Verhalten aufweisen, ist die Anordnung bzw. Ausgestaltung der beiden Signalpfade SP1 und SP2 bezogen auf eine Mittelachse MA zwischen den beiden Signalpfaden SP1 und SP2 achsensymmetrisch. [0068] Die Figur 10 zeigt im Querschnitt ein Ausführungsbeispiel für eine Ladungsträgerinjektionsstruktur 900, die als Dämpfungsglied 601 bzw. 602 bei dem Ausführungsbeispiel gemäß Figur 5, 6 und 7 eingesetzt werden kann. Die Ladungsträgerinjektionsstruktur 900 umfasst ein p-dotiertes Gebiet 901, ein un- oder schwachdotiertes mittleres Gebiet 902 sowie ein n-dotiertes Gebiet 903. Die zu dämpfende optische Welle wird vorzugsweise durch das mittlere Gebiet 902 gelenkt. [0069] Durch Anlegen einer Flussspannung an die Ladungsträgerinjektionsstruktur 900, beispielsweise durch die Steuereinrichtung 30 gemäß den Figur 1 lassen sich Ladungsträger in das mittlere Gebiet 902 injiziieren, wodurch - aufgrund der Ladungsträgerdämpfung - die dort geführte optische Welle gedämpft wird. [0070] Die Figur 11 zeigt ein photonisches Bauelement 10 mit einer Vielzahl an Signalpfaden SP1, SP2,..., SPn, die jeweils einen Photodetektor PD1, PD2,..., PDn aufweisen. Eine Interferenzeinrichtung 20 des Bauelements weist eine entsprechende Anzahl an Signalausgängen SA1, SA2,..., SAn auf und ist mit einer Vielzahl m an Phasenmodulatoren PME ausgestattet, die von einer Steuereinrichtung 30 mittels Steuersignals ST1, ST2,..., STm angesteuert werden. Bezüglich der Ansteuerung sei auf die obigen Ausführungen im Zusammenhang mit den Figuren 1 bis 10 verwiesen. [0071] Die Figur 12 zeigt ein photonisches Bauelement 10, das dem Ausführungsbeispiel gemäß Figur 5 entspricht. Im Unterschied zum Ausführungsbeispiel gemäß Figur 5 sind die Photodetektoren PD1 und PD2 nicht über Wellenleiter angeschlossen, sondern unmittelbar an die ersten Ausgänge A1a bzw. A2a der beiden Gitterkoppler GC1 und GC2 aufgesetzt. Im Übrigen gelten die Ausführungen zu Figur 5 für das Ausführungsbeispiel gemäß Figur 12 entsprechend. [0072] Die Figur 13 zeigt eine bevorzugte Ausführungsvariante für das photonische Bauelement 10 gemäß Figur 1 in einem Querschnitt an der Stelle des ersten Signalpfades SP1. Der Chip 2000 des Bauelements 10 umfasst ein Substrat 2110, bei dem es sich beispielsweise um ein Siliziumsubstrat handeln kann. [0073] Auf dem Substrat 2110 ist ein eine Vielzahl an Materialschichten aufweisendes Schichtpaket 2120 angeordnet. In dem Schichtpaket 2120 sind die optischen Wellenleiter 101 und 102, der Gitterkoppler GC1, eine Beugungs- und Brechungsstruktur in Form einer Linse 2140 und der Photodetektor PD1 integriert. Die optischen Wellenleiter 101 und 102, der Gitterkoppler GC1 sind in derselben Schicht und damit in der selben Chipebene E integriert. [0074] Die auf dem Substrat 2110 befindliche erste bzw. unterste Schicht des Schichtpakets 2120 ist eine Siliziumoxidschicht 2121, auf der eine Siliziumschicht 2122 aufliegt. In der Siliziumschicht 2122 sind zumindest die Wellenleiter 101 und 102 und der Gitterkoppler GC1 integriert. Die optischen Wellenleiter 101 und 102 können beispielsweise so genannte SOI-Rippen- oder Streifenwellenleiter sein, bei dem die optische Strahlung in der Siliziumschicht 2122 geführt wird. [0075] Der Photodetektor PD1 kann in modifizierten Abschnitten der Siliziumschicht 2122 und/oder in einer auf der Siliziumschicht 2122 befindlichen anderen Schicht 2123, bei der es sich beispielsweise um eine Germanium- oder Silizium-Germanium-Schicht handeln kann, integriert sein. [0076] In der obersten Materialschicht 2124 oder zumindest in einer der oberen Materialschichten des Schichtpakets 2120 ist die Linse 2140 integriert. Die Linse 2140 befindet sich also - vom Substrat 2110 aus gesehen - oberhalb der wellenführenden Schicht 2122 des Schichtpakets 2120 bzw. oberhalb der Schicht, in der der Gitterkoppler GC1 und die Wellenleiter 101 und 102 integriert sind. [0077] In der Figur 13 lässt sich erkennen, dass durch den vorgesehenen Einsatz des Gitterkopplers GC1 ein chipebenenbezogen interner Ausgangskoppelpfad IAKP innerhalb der Chipebene E und ein chipebenenbezogen externer Ausgangskoppelpfad EAKP aus der Chipebene E heraus zur Verfügung steht. Dies ermöglicht es beispielsweise, ein Ausgangssignal Pout, das das Bauelement 10 über den Signalpfad PD1 verlassen soll, über den externen Ausgangskoppelpfad EAKP auszukoppeln und das Monitoring bzw. das Beobachten des Ausgangssignals mittels des Photodetektors PD1 über den internen Ausgangskoppelpfad IAKP durchzuführen. [0078] Obwohl die Erfindung im Detail durch bevorzugte Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen. [0079] Zusammengefasst umfasst die oben beschriebene Erfindung folgende Ausführungsvarianten:1. Photonisches Bauelement (10) mit einer Interferenzeinrichtung (20), die mindestens einen Eingang und zumindest einen ersten und einen zweiten Ausgang aufweist,dadurch gekennzeichnet, dassdas Bauelement (10) darüber hinaus umfasst: einen ersten Gitterkoppler (GC1), der einen ersten und einen zweiten Gitterkopplerausgang aufweist und mit einem Gitterkopplereingang mit dem ersten Ausgang der Interferenzeinrichtung (20) in Verbindung steht, einen zweiten Gitterkoppler (GC2), der einen ersten und einen zweiten Gitterkopplerausgang aufweist und mit einem Gitterkopplereingang mit dem zweiten Ausgang der Interferenzeinrichtung (20) in Verbindung steht, einen ersten Photodetektor (PD1), der mit dem ersten Gitterkopplerausgang des ersten Gitterkopplers (GC1) in Verbindung steht, einen zweiten Photodetektor (PD2), der mit dem ersten Gitterkopplerausgang des zweiten Gitterkopplers (GC2) in Verbindung steht, und eine Steuereinrichtung (30), die mit dem ersten und zweiten Photodetektor (PD1, PD2) in Verbindung steht und anhand der Photosignale (I1, I2) der beiden Photodetektoren (PD1, PD2) oder einem mit den Photosignalen (I1, I2) gebildeten Auswertsignal zumindest ein Steuersignal (ST1, ST2) zur Ansteuerung der Interferenzeinrichtung (20) bildet, wobei der erste und zweite Gitterkoppler (GC1, GC2) in derselben Chipebene (E) eines Chips (2000) des Bauelements (10) angeordnet, insbesondere integriert, sind und wobei bei dem ersten und zweiten Gitterkoppler (GC1, GC2) jeweils die zweiten Gitterkopplerausgänge jeweils einen Koppelpfad aus der Chipebene (E) hinaus bilden, und zwar in einem Winkel zwischen 70 und 110 Grad zur Chipebene (E). 2. Photonisches Bauelement (10) nach Ausführungsvariante 1, dadurch gekennzeichnet, dassdie Interferenzeinrichtung (20) in der Chipebene (E) des Chips (2000) angeordnet oder in dieser integriert ist. 3. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassmindestens ein in der Chipebene (E) des Chips (2000) des Bauelements (10) angeordneter oder darin integrierter Wellenleiter (101, 102, 201, 202) den ersten Ausgang der Interferenzeinrichtung (20) mit dem Gitterkopplereingang des ersten Gitterkopplers (GC1), den zweiten Ausgang der Interferenzeinrichtung (20) mit dem Gitterkopplereingang des zweiten Gitterkopplers (GC2), den ersten Gitterkopplerausgang des ersten Gitterkopplers (GC1) mit dem ersten Photodetektor (PD1) oder den ersten Gitterkopplerausgang des zweiten Gitterkopplers (GC2) mit dem zweiten Photodetektor (PD2) verbindet. 4. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassder erste und zweite Photodetektor (PD1, PD2) und der erste und zweite Gitterkoppler (GC1, GC2) in derselben Chipebene (E) des Chips (2000) des Bauelements (10) angeordnet, insbesondere integriert, sind. 5. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten 1 bis 3,dadurch gekennzeichnet, dasszumindest einer der Photodetektoren (PD1, PD2) oder beide Photodetektoren (PD1, PD2) außerhalb der Chipebene (E) des Chips (2000) angeordnet sind. 6. Photonisches Bauelement (10) nach Ausführungsvariante 5, dadurch gekennzeichnet, dasszwischen dem außerhalb der Chipebene (E) des Chips (2000) angeordneten Photodetektor (PD1, PD2) und dem mit diesem in Verbindung stehenden Gitterkoppler (GC1, GC2) ein weiterer Koppler (GC3, GC4) angeordnet ist, insbesondere ein solcher, der in der Chipebene (E) angeordnet ist und dessen Kopplerausgang einen Koppelpfad aus der Chipebene (E) hinaus bildet, und zwar in einem Winkel zwischen 70 und 110 Grad zur Chipebene (E). 7. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassdas Bauelement (10) einen Summierer (31) aufweist, der als Auswertsignal ein Summensignal durch Summieren der beiden Photosignale (I1, I2) bildet. 8. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassdas Bauelement (10) einen Differenzbilder (32) aufweist, der als Auswertsignal ein Differenzsignal durch Subtrahieren eines der beiden Photosignale von dem anderen der beiden Photosignale bildet. 9. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassdie Interferenzeinrichtung (20) mindestens einen Mach-Zehnder-Modulator (MZM1, MZM2) aufweist. 10. Photonisches Bauelement (10) nach Ausführungsvariante 9, dadurch gekennzeichnet, dass der Mach-Zehnder-Modulator eingangsseitig einen 2x2-Richtkoppler (21) mit zwei Eingängen und zwei Ausgängen oder einen 1x2-Teiler mit einem Eingang und zwei Ausgängen aufweist, der Eingang des eingangsseitigen 1x2 Teilers oder die zwei Eingänge des eingangsseitigen Richtkopplers den Eingang oder die zwei Eingänge der Interferenzeinrichtung (20) bilden oder mit diesem oder diesen zumindest in Verbindung stehen, an die zwei Ausgänge des eingangsseitigen Richtkopplers oder 1x2-Teilers jeweils ein Wellenleiter (22, 23) angeschlossen ist, von denen mindestens einer mit einem von der Steuereinrichtung (30) angesteuerten Phasenmodulator (H1, H2) ausgestattet ist, der Mach-Zehnder-Modulator ausgangsseitig einen 2x2-Richtkoppler (24) mit zwei Eingängen und zwei Ausgängen aufweist, an die zwei Eingänge des ausgangsseitigen Richtkopplers die zwei Wellenleiter angeschlossen sind und die zwei Ausgänge des ausgangsseitigen Richtkopplers die Ausgänge der Interferenzeinrichtung (20) bilden oder mit diesen zumindest in Verbindung stehen. 11. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassdie Interferenzeinrichtung (20) zwei oder mindestens zwei Mach-Zehnder-Modulatoren aufweist. 12. Photonisches Bauelement (10) nach Ausführungsvariante 11, dadurch gekennzeichnet, dassdie Mach-Zehnder-Modulatoren mittels eines eingangsseitigen Leistungsteilers, insbesondere eines eingangsseitigen 1x2-Teilers oder eines eingangsseitigen 2x2-Richtkopplers, sowie mittels eines ausgangsseitigen Leistungsteilers, insbesondere eines ausgangsseitigen 2x2-Richtkopplers, optisch parallel geschaltet sind. 13. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassdie Interferenzeinrichtung (20) einen Ringresonator (500) aufweist. 14. Photonisches Bauelement (10) nach Ausführungsvariante 13, dadurch gekennzeichnet, dassdie Interferenzeinrichtung (20) zumindest zwei Koppler (501, 502) aufweist, die jeweils durch einen Abschnitt des Ringresonators (500) und einen zu dem jeweiligen Abschnitt benachbarten Wellenleiter gebildet sind, wobei der mindestens eine Eingang der Interferenzeinrichtung (20) oder zumindest einer der Eingänge der Interferenzeinrichtung (20) über einen der zumindest zwei Koppler an den Ringresonator (500) angekoppelt ist, der erste Ausgang der Interferenzeinrichtung (20) über den einen der zumindest zwei Koppler oder einen anderen der zumindest zwei Koppler an den Ringresonator (500) angekoppelt ist und der zweite Ausgang der Interferenzeinrichtung (20) über den einen der zumindest zwei Koppler oder einen anderen der zumindest zwei Koppler an den Ringresonator (500) angekoppelt ist. 15. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dasszumindest ein Dämpfungsglied (504, 601, 602) in den Signalpfad (SP1) zwischen dem ersten Ausgang der Interferenzeinrichtung (20) und dem ersten Photodetektor (PD1) oder in den Signalpfad (SP2) zwischen dem zweiten Ausgang der Interferenzeinrichtung (20) und dem zweiten Photodetektor (PD2) geschaltet ist. 16. Photonisches Bauelement (10) nach Ausführungsvariante 15, dadurch gekennzeichnet, dassdas Dämpfungsglied (504, 601, 602) einstellbar ist und mit der Steuereinrichtung (30) in Verbindung steht und von dieser angesteuert wird. 17. Photonisches Bauelement (10) nach Ausführungsvariante 16, dadurch gekennzeichnet, dassdie Steuereinrichtung (30) die Interferenzeinrichtung (20) und das Dämpfungsglied (504, 601, 602) derart ansteuert, dass ein an dem zweiten Gitterkopplerausgang des ersten Gitterkopplers (GC1) austretendes und von der Interferenzeinrichtung (20) zumindest auch amplitudenmoduliertes optisches Signal ein vorgegebenes Ein-Aus-Verhältnis erreicht. 18. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten 16 bis 17,dadurch gekennzeichnet, dassdie Steuereinrichtung (30) das Dämpfungsglied (504, 601, 602) derart einstellt, dass die optische Pfaddämpfung im Signalpfad (SP1) zwischen dem ersten Ausgang der Interferenzeinrichtung (20) und dem ersten Photodetektor (PD1) und die optische Pfaddämpfung im Signalpfad (SP2) zwischen dem zweiten Ausgang der Interferenzeinrichtung (20) und dem zweiten Photodetektor (PD2) gleich groß sind oder zumindest weniger als ein vorgegebenes Maß voneinander abweichen. 19. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten 16 bis 18,dadurch gekennzeichnet, dassdas Dämpfungsglied (504, 601, 602) eine Ladungsträgerinjektionsstruktur (900), insbesondere eine p-n- oder pin-Diodenstruktur, zur Ladungsträgerinjektion aufweist. 20. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassder optische Signalpfad (SP1) zwischen dem ersten Ausgang der Interferenzeinrichtung (20) und dem ersten Photodetektor (PD1) und der optische Signalpfad (SP2) zwischen dem zweiten Ausgang der Interferenzeinrichtung (20) und dem zweiten Photodetektor (PD2) achsensymmetrisch zueinander angeordnet sind. 21. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassder Signalpfad (SP1) zwischen dem ersten Ausgang der Interferenzeinrichtung (20) und dem ersten Photodetektor (PD1) und der Signalpfad (SP2) zwischen dem zweiten Ausgang der Interferenzeinrichtung (20) und dem zweiten Photodetektor (PD2) die gleiche Pfaddämpfung aufweisen, und insbesondere aus baugleichen Komponenten bestehen, die identisch oder symmetrisch zueinander angeordnet sind. 22. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassin der Chipebene (E) der maximale Abstand zwischen dem ersten Signalpfad (SP1), der zwischen dem ersten Ausgang der Interferenzeinrichtung (20) und dem ersten Photodetektor (PD1) gebildet wird, und dem zweiten Signalpfad (SP2), der zwischen dem zweiten Ausgang der Interferenzeinrichtung (20) und dem zweiten Photodetektor (PD2) gebildet wird, kleiner als 100 µm ist. 23. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassdie Steuereinrichtung (30) in den Chip (2000) monolithisch integriert ist. 24. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dassder erste und zweite Gitterkoppler (GC1, GC2) baugleich sind. 25. Photonisches Bauelement (10) nach einer der voranstehenden Ausführungsvarianten,dadurch gekennzeichnet, dasszumindest der zweite Gitterkopplerausgang des ersten Gitterkopplers (GC1) einen optischen Signalausgang des photonischen Bauelements (10) bildet. 26. Verfahren zum Betreiben eines photonisches Bauelements (10),dadurch gekennzeichnet, dassals photonisches Bauelement (10) ein Bauelement (10) nach einem der voranstehenden Ausführungsvarianten betrieben wird, wobei die Steuereinrichtung (30) zumindest die Interferenzeinrichtung (20) ansteuert. Bezugszeichenliste [0080] 10Bauelement20Interferenzeinrichtung212x2-Richtkoppler22Wellenleiter23Wellenleiter24Richtkoppler30Steuereinrichtung31Summierer32Differenzbilder60Emitter70Emitter101Wellenleiter102Wellenleiter201Wellenleiter202Wellenleiter401Leistungsteiler402Leistungsteiler500Ringresonator501Koppler502Koppler503Phasenmodulator504Dämpfungsglied601Dämpfungsglied602Dämpfungsglied801Faser802Faser900Ladungsträgerinjektionsstruktur901Gebiet902Gebiet903Gebiet2000Chip2110Substrat2120Schichtpaket2121Siliziumoxidschicht2122Siliziumschicht2123Schicht2124oberste Materialschicht2140LinseA1aGitterkopplerausgangA1bGitterkopplerausgangA2aGitterkopplerausgangA2bGitterkopplerausgangA20aAusgangA20bAusgangA21aAusgangA21bAusgangEChipebeneE10SignaleingangE20EingangE21aEingangE21bEingangE24aEingangE24bEingangEAKPexterner AusgangskoppelpfadGC1GitterkopplerGC2GitterkopplerGC3GitterkopplerGC4GitterkopplerGCnGitterkopplerH1PhasenschieberH2PhasenschieberI1Photostrom bzw. PhotosignalI2PhotosignalI2'verschobenes PhotosignalIAPIstarbeitspunktIAKPinterner AusgangskoppelpfadIdiffDifferenzsignalIsumSummensignalIG1GitterkopplereingangIG2GitterkopplereingangMAMittelachseMZM1Mach-Zehnder-ModulatorMZM2Mach-Zehnder-ModulatorP1SignalP2SignalPD1PhotodetektorPD2PhotodetektorPDnPhotodetektorPMEPhasenmodulatorPoutAusgangssignalPS1ModulatorPS2ModulatorSA1SignalausgangSA2SignalausgangSAnSignalausgangSAPSollarbeitspunktSAP'SollarbeitspunktSP1SignalpfadSP2SignalpfadSpnSignalpfadST1SteuersignalST2SteuersignalSTmSteuersignal
权利要求:
Claims (15) [0001] Photonisches Bauelement (10) mit einer Interferenzeinrichtung (20), die mindestens einen Eingang und zumindest einen ersten und einen zweiten Ausgang aufweist,wobeidas Bauelement (10) darüber hinaus umfasst: - einen ersten Gitterkoppler (GC1), der einen ersten und einen zweiten Gitterkopplerausgang aufweist und mit einem Gitterkopplereingang mit dem ersten Ausgang der Interferenzeinrichtung (20) in Verbindung steht, - einen zweiten Gitterkoppler (GC2), der einen ersten und einen zweiten Gitterkopplerausgang aufweist und mit einem Gitterkopplereingang mit dem zweiten Ausgang der Interferenzeinrichtung (20) in Verbindung steht, - einen ersten Photodetektor (PD1), der mit dem ersten Gitterkopplerausgang des ersten Gitterkopplers (GC1) in Verbindung steht, - einen zweiten Photodetektor (PD2), der mit dem ersten Gitterkopplerausgang des zweiten Gitterkopplers (GC2) in Verbindung steht, und - eine Steuereinrichtung (30), die mit dem ersten und zweiten Photodetektor (PD1, PD2) in Verbindung steht und anhand der Photosignale (I1, I2) der beiden Photodetektoren (PD1, PD2) oder einem mit den Photosignalen (I1, I2) gebildeten Auswertsignal zumindest ein Steuersignal (ST1, ST2) zur Ansteuerung der Interferenzeinrichtung (20) bildet, - wobei der erste und zweite Gitterkoppler (GC1, GC2) in derselben Chipebene (E) eines Chips (2000) des Bauelements (10) angeordnet, insbesondere integriert, sind und - wobei bei dem ersten und zweiten Gitterkoppler (GC1, GC2) jeweils die zweiten Gitterkopplerausgänge jeweils einen Koppelpfad aus der Chipebene (E) hinaus bilden, und zwar in einem Winkel zwischen 70 und 110 Grad zur Chipebene (E),dadurch gekennzeichnet, dass - zumindest einer der Photodetektoren (PD1, PD2) oder beide Photodetektoren (PD1, PD2) außerhalb der Chipebene (E) des Chips (2000) angeordnet sind und - zwischen dem außerhalb der Chipebene (E) des Chips (2000) angeordneten Photodetektor (PD1, PD2) und dem mit diesem in Verbindung stehenden Gitterkoppler (GC1, GC2) ein weiterer Koppler (GC3, GC4) angeordnet ist, insbesondere ein solcher, der in der Chipebene (E) angeordnet ist und dessen Kopplerausgang einen Koppelpfad aus der Chipebene (E) hinaus bildet, und zwar in einem Winkel zwischen 70 und 110 Grad zur Chipebene (E). [0002] Photonisches Bauelement (10) nach Anspruch 1,dadurch gekennzeichnet, dass die Interferenzeinrichtung (20) in der Chipebene (E) des Chips (2000) angeordnet oder in dieser integriert ist. [0003] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass mindestens ein in der Chipebene (E) des Chips (2000) des Bauelements (10) angeordneter oder darin integrierter Wellenleiter (101, 102, 201, 202) - den ersten Ausgang der Interferenzeinrichtung (20) mit dem Gitterkopplereingang des ersten Gitterkopplers (GC1), - den zweiten Ausgang der Interferenzeinrichtung (20) mit dem Gitterkopplereingang des zweiten Gitterkopplers (GC2), - den ersten Gitterkopplerausgang des ersten Gitterkopplers (GC1) mit dem ersten Photodetektor (PD1) oder - den ersten Gitterkopplerausgang des zweiten Gitterkopplers (GC2) mit dem zweiten Photodetektor (PD2)verbindet. [0004] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass der erste und zweite Photodetektor (PD1, PD2) und der erste und zweite Gitterkoppler (GC1, GC2) in derselben Chipebene (E) des Chips (2000) des Bauelements (10) angeordnet, insbesondere integriert, sind. [0005] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass das Bauelement (10) einen Summierer (31) aufweist, der als Auswertsignal ein Summensignal durch Summieren der beiden Photosignale (I1, I2) bildet. [0006] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass das Bauelement (10) einen Differenzbilder (32) aufweist, der als Auswertsignal ein Differenzsignal durch Subtrahieren eines der beiden Photosignale von dem anderen der beiden Photosignale bildet. [0007] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass die Interferenzeinrichtung (20) mindestens einen Mach-Zehnder-Modulator (MZM1, MZM2) aufweist. [0008] Photonisches Bauelement (10) nach Anspruch 7,dadurch gekennzeichnet, dass - der Mach-Zehnder-Modulator eingangsseitig einen 2x2-Richtkoppler (21) mit zwei Eingängen und zwei Ausgängen oder einen 1x2-Teiler mit einem Eingang und zwei Ausgängen aufweist, - der Eingang des eingangsseitigen 1x2 Teilers oder die zwei Eingänge des eingangsseitigen Richtkopplers den Eingang oder die zwei Eingänge der Interferenzeinrichtung (20) bilden oder mit diesem oder diesen zumindest in Verbindung stehen, - an die zwei Ausgänge des eingangsseitigen Richtkopplers oder 1x2-Teilers jeweils ein Wellenleiter (22, 23) angeschlossen ist, von denen mindestens einer mit einem von der Steuereinrichtung (30) angesteuerten Phasenmodulator (H1, H2) ausgestattet ist, - der Mach-Zehnder-Modulator ausgangsseitig einen 2x2-Richtkoppler (24) mit zwei Eingängen und zwei Ausgängen aufweist, - an die zwei Eingänge des ausgangsseitigen Richtkopplers die zwei Wellenleiter angeschlossen sind und - die zwei Ausgänge des ausgangsseitigen Richtkopplers die Ausgänge der Interferenzeinrichtung (20) bilden oder mit diesen zumindest in Verbindung stehen. [0009] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass die Interferenzeinrichtung (20) zwei oder mindestens zwei Mach-Zehnder-Modulatoren aufweist. [0010] Photonisches Bauelement (10) nach Anspruch 9,dadurch gekennzeichnet, dass die Mach-Zehnder-Modulatoren mittels eines eingangsseitigen Leistungsteilers, insbesondere eines eingangsseitigen 1x2-Teilers oder eines eingangsseitigen 2x2-Richtkopplers, sowie mittels eines ausgangsseitigen Leistungsteilers, insbesondere eines ausgangsseitigen 2x2-Richtkopplers, optisch parallel geschaltet sind. [0011] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass die Interferenzeinrichtung (20) einen Ringresonator (500) aufweist. [0012] Photonisches Bauelement (10) nach Anspruch 11,dadurch gekennzeichnet, dass die Interferenzeinrichtung (20) zumindest zwei Koppler (501, 502) aufweist, die jeweils durch einen Abschnitt des Ringresonators (500) und einen zu dem jeweiligen Abschnitt benachbarten Wellenleiter gebildet sind, wobei - der mindestens eine Eingang der Interferenzeinrichtung (20) oder zumindest einer der Eingänge der Interferenzeinrichtung (20) über einen der zumindest zwei Koppler an den Ringresonator (500) angekoppelt ist, - der erste Ausgang der Interferenzeinrichtung (20) über den einen der zumindest zwei Koppler oder einen anderen der zumindest zwei Koppler an den Ringresonator (500) angekoppelt ist und - der zweite Ausgang der Interferenzeinrichtung (20) über den einen der zumindest zwei Koppler oder einen anderen der zumindest zwei Koppler an den Ringresonator (500) angekoppelt ist. [0013] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass - der optische Signalpfad (SP1) zwischen dem ersten Ausgang der Interferenzeinrichtung (20) und dem ersten Photodetektor (PD1) und der optische Signalpfad (SP2) zwischen dem zweiten Ausgang der Interferenzeinrichtung (20) und dem zweiten Photodetektor (PD2) achsensymmetrisch zueinander angeordnet sind, und/oder - der Signalpfad (SP1) zwischen dem ersten Ausgang der Interferenzeinrichtung (20) und dem ersten Photodetektor (PD1) und der Signalpfad (SP2) zwischen dem zweiten Ausgang der Interferenzeinrichtung (20) und dem zweiten Photodetektor (PD2) die gleiche Pfaddämpfung aufweisen, und insbesondere aus baugleichen Komponenten bestehen, die identisch oder symmetrisch zueinander angeordnet sind. [0014] Photonisches Bauelement (10) nach einem der voranstehenden Ansprüche,dadurch gekennzeichnet, dass - in der Chipebene (E) der maximale Abstand zwischen dem ersten Signalpfad (SP1), der zwischen dem ersten Ausgang der Interferenzeinrichtung (20) und dem ersten Photodetektor (PD1) gebildet wird, und dem zweiten Signalpfad (SP2), der zwischen dem zweiten Ausgang der Interferenzeinrichtung (20) und dem zweiten Photodetektor (PD2) gebildet wird, kleiner als 100 µm ist, und/oder - die Steuereinrichtung (30) in den Chip (2000) monolithisch integriert ist und/oder - der erste und zweite Gitterkoppler (GC1, GC2) baugleich sind und/oder - zumindest der zweite Gitterkopplerausgang des ersten Gitterkopplers (GC1) einen optischen Signalausgang des photonischen Bauelements (10) bildet. [0015] Verfahren zum Betreiben eines photonisches Bauelements (10),dadurch gekennzeichnet, dass als photonisches Bauelement (10) ein Bauelement (10) nach einem der voranstehenden Ansprüche betrieben wird, wobei die Steuereinrichtung (30) zumindest die Interferenzeinrichtung (20) ansteuert.
类似技术:
公开号 | 公开日 | 专利标题 EP0963566B1|2001-08-08|Elektrooptische koppelbaugruppe DE60202415T2|2006-01-12|Optischer wellenlängenselektiver Schalter ohne Verzerrung der unblockierten Kanäle EP0985159B1|2001-10-24|Integrierte optische schaltung EP1425619B1|2006-11-29|Sende- und empfangsanordnung für eine bidirektionale optische datenübertragung DE60033007T2|2007-07-19|Ein verbesserter, auf interner Totalreflexion beruhender optischer Schalter DE69627438T9|2006-01-05|Verfahren und Vorrichtung zum Niveauausgleich der Leistung der Kanäle eines spektral gemultiplexten optischen Signals EP0366974B1|1993-12-22|Halbleiterschaltung DE4327103B4|2008-07-31|Interferometrisch abstimmbares optisches Filter EP2624031B1|2017-12-13|Verfahren und Anordnung zum Erzeugen eines Laserstrahls mit unterschiedlicher Strahlprofilcharakteristik mittels einer Mehrfachclad-Faser DE69727445T2|2004-12-16|Mach-Zehnder optischer Modulator mit einstellbarem Chirp und Verfahren zur Erzeugung einstellbaren Chirps DE602005005601T2|2009-04-16|Optische Steuervorrichtung mit photonischem Kristallwellenleiter DE60218786T2|2007-12-06|Vorrichtung mit photonischer bandlückenstruktur und verfahren zur schaltung optischer signale EP0613221B1|1999-01-20|Mehrstufiger faseroptischer Verstärker DE3020461C2|1989-08-03| DE69733670T2|2006-04-20|Optischer demultiplexer mit einem beugungsgitter DE60219815T2|2008-01-17|Monolitische elektronische mehrlagenanordnung und deren herstellungsverfahren DE60122957T2|2007-09-06|Zweidimensionale Photonenkristall-Wellenleiter und Wellenlängendemultiplexer DE60304841T2|2006-11-23|Lichtstrahl-ablenkvorrichtung und verfahren zu deren herstellung EP0565999A2|1993-10-20|Anordnung zur optischen Kopplung von zwei Gruppen von Wellenleitern DE3331790C2|1990-09-27| DE112008000248B4|2012-10-18|System mit im Waferbonding-Zwischenraum gebildeten Chipkühlkanälen EP0475013A1|1992-03-18|Faserkreisel EP0817980B1|2003-07-09|Kompakte optisch-optische schalter und wellenlängen-konverter mittels multimode-interferenz moden-konvertern DE60110901T2|2006-03-23|Faserkoppler, system und zugehörige verfahren zur reduktion von rückreflektionen DE60222824T2|2008-07-17|Optischer Multiplexer/Demultiplexer
同族专利:
公开号 | 公开日 EP3542197A1|2019-09-25| WO2018091047A1|2018-05-24| CN109983380A|2019-07-05| DE102016222873A1|2018-05-24| US20200209482A1|2020-07-02|
引用文献:
公开号 | 申请日 | 公开日 | 申请人 | 专利标题
法律状态:
2020-06-26| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED | 2020-06-26| PUAI| Public reference made under article 153(3) epc to a published international application that has entered the european phase|Free format text: ORIGINAL CODE: 0009012 | 2020-07-29| AK| Designated contracting states|Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR | 2020-07-29| AC| Divisional application: reference to earlier application|Ref document number: 3542197 Country of ref document: EP Kind code of ref document: P | 2020-11-20| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE | 2020-12-23| RBV| Designated contracting states (corrected)|Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR | 2020-12-23| 17P| Request for examination filed|Effective date: 20201116 | 2021-03-28| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: GRANT OF PATENT IS INTENDED | 2021-03-28| GRAP| Despatch of communication of intention to grant a patent|Free format text: ORIGINAL CODE: EPIDOSNIGR1 | 2021-04-28| INTG| Intention to grant announced|Effective date: 20210329 | 2021-07-15| GRAS| Grant fee paid|Free format text: ORIGINAL CODE: EPIDOSNIGR3 | 2021-07-16| GRAA| (expected) grant|Free format text: ORIGINAL CODE: 0009210 | 2021-07-16| STAA| Information on the status of an ep patent application or granted ep patent|Free format text: STATUS: THE PATENT HAS BEEN GRANTED | 2021-08-18| AK| Designated contracting states|Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR | 2021-08-18| AC| Divisional application: reference to earlier application|Ref document number: 3542197 Country of ref document: EP Kind code of ref document: P | 2021-08-18| REG| Reference to a national code|Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH | 2021-08-31| REG| Reference to a national code|Ref country code: CH Ref legal event code: EP | 2021-09-09| REG| Reference to a national code|Ref country code: DE Ref legal event code: R096 Ref document number: 502017011255 Country of ref document: DE | 2021-09-15| REG| Reference to a national code|Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN Ref country code: AT Ref legal event code: REF Ref document number: 1422142 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 | 2021-12-10| REG| Reference to a national code|Ref country code: LT Ref legal event code: MG9D | 2021-12-22| REG| Reference to a national code|Ref country code: NL Ref legal event code: MP Effective date: 20210818 | 2022-01-31| PG25| Lapsed in a contracting state [announced via postgrant information from national office to epo]|Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211118 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211220 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211118 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 | 2022-01-31| PGFP| Annual fee paid to national office [announced via postgrant information from national office to epo]|Ref country code: GB Payment date: 20211123 Year of fee payment: 5 Ref country code: DE Payment date: 20211130 Year of fee payment: 5 Ref country code: FR Payment date: 20211119 Year of fee payment: 5 | 2022-02-28| PG25| Lapsed in a contracting state [announced via postgrant information from national office to epo]|Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210818 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211119 |
优先权:
[返回顶部]
申请号 | 申请日 | 专利标题 相关专利
Sulfonates, polymers, resist compositions and patterning process
Washing machine
Washing machine
Device for fixture finishing and tension adjusting of membrane
Structure for Equipping Band in a Plane Cathode Ray Tube
Process for preparation of 7 alpha-carboxyl 9, 11-epoxy steroids and intermediates useful therein an
国家/地区
|